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Abstract

A novel strategy of data analysis for artificial taste and odour systems is presented in this work. It is demonstrated that using a supervised
method also in feature extraction phase enhances fruit juice classification capability of sensor array developed at Warsaw University of
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echnology. Comparison of direct processing (raw data processed by Artificial Neural Network (ANN), raw data processed by Pa
quares-Discriminant Analysis (PLS-DA)) and two-stage processing (Principal Components Analysis (PCA) outputs processed
LS-DA outputs processed by ANN) is presented. It is shown that considerable increase of classification capability occurred in

he new method proposed by the authors.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Since the first work dealing with electronic nose[1], many
dour-sensing systems have been presented[2]. In 1985,

he first system for liquid analysis was described by Otto
nd Thomas[3]. During last 20 years, only a few devices

or liquids called “electronic tongues” have been presented.
he majority of those systems are based on electrochemistry

4–6]; however, other principles of operation are also utilized
7]. The principle of the operation of these devices is based on
ulticomponent measurements of the sensor arrays coupled
ith various pattern recognition methods. The procedures of
nalyzing responses of the sensor systems rely on the ap-
lication of statistical and mathematical methods and they
emand sophisticated methods originating from chemomet-
ics, a subdiscipline of chemistry[8].

∗ Corresponding author. Tel.: +48 22 6607873; fax: +48 22 6605631.
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PCA is the most common and versatile method to
play electronic tongue and electronic nose measurem
It decomposes the data matrix into a new set of unc
lated variables (Principal Components), which means th
finds new directions in the pattern space, so that they ex
the maximum amount of variance in the data set. These
variables may be used as inputs for more complex cl
fiers, e.g. ANN. In contrast to PCA, PLS-DA is a supervi
method, which models the relationship between two m
ces, i.e., the data set obtained from sensor array mea
ments and class affiliation matrix (target matrix compose
vector with true class affiliations). PLS-DA determines a
of latent variables corresponding to principal componen
PCA, but explaining as much as possible of the covari
between the two matrices (PLS-DA scores). This is a ge
alization of multiple linear regression; it can analyze m
noisy and uncompleted data and it is able to manage
multicolinearity problem, which often occurs in sensor
ray measurements[9]. The output of PLS-DA is the sco
matrix (PLS-DA scores) that can be plotted similarly a
039-9140/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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P. Ciosek et al. / Talanta 67 (2005) 590–596 591

PCA, and predictor matrix (Ypred), which estimates class
affiliation. The comparison of particular vectors of predictor
matrix with respondent vectors of target matrix shows cor-
rectness or incorrectness of particular sample classification.
When comparisons of all vectors are performed, percent of
correct classifications is obtained:

%CC= Nc

Nc + Nnc
× 100%

whereNc is the number of correct classifications andNnc is
the number of incorrect classifications.

ANNs, a powerful tool for non-linear approximations, are
widely used in artificial senses data analysis because of their
ability to imitate human brain behavior learning the solu-
tion of problems from the data avoiding the necessity of any
modeling. Among numerous network architectures, back-
propagation neural networks have been frequently used[10].
The output of ANN is predictor matrix (Ypred), which af-
ter comparison with target matrix gives percent of correct
classifications (the same procedure as for PLS-DA).

PCA, PLS-DA and ANN may be combined in order to en-
hance classification capability. In this paper, the comparison
of this method for the classification of commercial brands of
orange juices has been presented. Measurements were per-
formed by an electronic tongue developed at Warsaw Uni-
versity of Technology[11]. This work presents also, a new
s vised
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membrane composition were prepared. The membranes for
ISEs preparation contained appropriate ionophore, lipophilic
salt, 61 wt.% plasticizer, and 31–33 wt.% high-molecular-
weight PVC (Table 1). Membrane components were supplied
by Fluka Chemie AG, i.e., TPPClMn (chloride ionophore
I), ETH 6010 (carbonate ionophore I), valinomycin (potas-
sium ionophore I), ionophore X (sodium ionophore X), non-
actin (ammonium ionophore I), ETH 129 (calcium ionophore
II), TDMAC (tridodecylmethylammonium chloride), TDAB
(tetrakis(decyl)ammonium bromide), KTFPB (potassium
tetrakis [3,5-bis(trifluoromethyl)phenyl]borate), KTPClPB
(potassium tetrakis (4-chlorophenyl)borate),o-NPOE (2-
nitrophenyl octyl ether), DOS (bis(2-ethylhexyl)sebacate)
and BBPA (bis(1-butylpentyl)adipate). Fluoride ionophore
(uranyl salophene derivative) was synthesized in Laboratory
of SMCT, MESA+ Research Institute, University of Twente
[12].

3. Measurements

All measurements were carried out at room temperature
(20◦C) using a multiplexer (EMF 16 Interface, Lawson Labs
Inc., accuracy of measurement−0.1 mV) with cells of the
following type: Ag, AgCl; KCl 1 M/CH3COOLi 1 M/sample
s is
s con-
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t

nd:
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1 TDM
trategy for classification based on the use of a super
eature extraction in order to enhance the classification c
ility of the system.

. Sensor array

The sensor array used in the experiment was forme
6 ion-selective electrodes (IS 561, Philips) and one
ard pH electrode (Mettler Toledo InLab 407 connecte
H-meter Mettler Delta 350), which creates an array o
ensors[11]. The system was composed of eight type
lectrodes: four types of classical ion-selective electr
ith enhanced selectivity towards particular ionic spe
resent in the sample, and four electrodes with enha
ross-sensitivity. Two electrodes of the same type for

able 1
omponents used for sensor membranes preparation

lectrode number Electrode type Plasticizer

, 2 Ca2+ o-NPOE

, 4 NH4
+ BPPA

, 6 Na+/K+ o-NPOE

, 8 Cl− o-NPOE

, 10 HCO3
− o-NPOE

1, 12 “Cation-selective” DOS
3, 14 F−/H2PO4

− o-NPOE
5, 16 “Anion-selective” o-NPOE
olution//membrane//internal filling solution; AgCl, Ag. Th
ystem enables to perform measurements of liquids as
entional direct potentiometry without any sample p
reatment.

Five brands of orange juice commercialized in Pola
appy, Fortuna, Tarczyn, Clippo, Hortex, were measu
or each brand of juice, samples with different manufac
ate (from various manufacture lots) were used. The le

ng set was constructed from the data obtained by meas
amples from two different manufacture lots and the tes
omprised samples originated from a third different ma
acture lot. The independence of learning and testing se
n this way provided. For each brand and each lot, six sam
ere measured.
The measurement of the electrodes signals in each

le lasted 15 min in 5 s intervals. After reaching steady-

philic salt Ionophore

PB 2 wt.% ETH 1001

ClPB 2 wt.% nonactine
5.15 wt.% ionophore X
0.2 wt.% valinomycin
1 wt.% TPPClMn

AC 1 wt.% ETH 6010
PFPB –
B 1.5 wt.% ionophore H2PO4

−; 0.05 wt.% ionophore F−
AC –
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responses, the last 10 values of the electrodes potentials were
averaged in pairs, i.e., from every type of sensors 10 out-
puts formed inputs for further data analysis. The learning set
comprised of: 2 (lots)× 5 (brands)× 6 (samples)× 10 (mea-
surements) = 600 cases belonging to five classes (brands), and
the testing set 1 (lot)× 5 (brands)× 6 (samples)× 10 (mea-
surements) = 300 cases.

4. Data analysis

Mean values of the responses of the electrodes of the same
type were calculated for each sample to form inputs for fur-

ther data analysis process. To remove scale effects, sensor
outputs were autoscaled (ztransformation)[13].

All pattern-recognition techniques are based on learning
by example, i.e., having a set of feature patterns of known
class (learning set); the classifier system is learned to give
corresponding class membership responses. Each sample was
characterized by input vector (features obtained by measuring
the sample) and five-dimension vector (target vector), which
should appear at output of the classifier to properly classify
the sample. Five brands of juices were used, so the simplest
way of creating target vector was to put in order successive
samples: (1) Cappy, (2) Fortuna, (3) Tarczyn, (4) Clippo, (5)
Hortex). Each of five outputs marked successive number of
Fig. 1. Processing methods presented in the article: (a) establishing of th
e models (fitting), (b) validation of the models with independent test samples.
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Fig. 2. Type of architecture of the neural network.

the sample. If, for example at fourth output, +1 appeared and
0 at the rest of outputs (“one-of-many” code[11,14]), then
it meant that the sample’s number was 4 (Clippo). Process
of learning involved adjusting value of weights and biases of
each neuron (IW{1, 1}, b {1}, LW {2, 1}, b {2},Fig. 2) or
finding LVs (PLS) in order to provide desired outputs cor-
responding to a determined input (seeFig. 1a). When sat-
isfactory level of error for the object from learning set is
obtained, class membership of unknown sample can be esti-
mated. When obtained classifications are compared with true
class membership (Comparison with TARGET MATRIX, see
Fig. 1b), percent of correct classifications is calculated.

Two kinds of data treatment were carried out: direct pro-
cessing and two-stage processing (Fig. 1). In direct process-
ing, two methods were used: ANN and PLS-DA (resulted
in %cc1 and %cc2, respectively). In the two-stage process-
ing, calculations based on four methods were performed. One
of them involved PCA as a feature extraction phase for ANN
processing (resulted in %cc3). This combination has been uti-
lized by several authors[2,6,11,15]. Although this approach
has shown important advantages, it is not the optimal choice.
PCA, used as pre-processor, puts in evidence the most cor-
related part of a data set and sometimes this point of view is
not optimal for classification purposes. It is possible that the
portion of data interesting for classification does not coincide
with that of maximum correlation, or in PCA language that
c , the
a be-

tween variables making the application of complex classifiers
easier like neural networks.

On the contrary, it is possible to refine the pre-processing
extracting features that are actually correlated with the solu-
tion of the problem. This opportunity is offered by PLS-DA.
Indeed, this method can be illustrated as a PCA where the
scores are further rotated in order to maximize the correla-
tion with scores of the target matrix.

Although it has been developed as a regression method,
PLS can be utilized to solve classification problems encoding
in the target matrix the class membership of the measured
samples (PLS-DA). The usual “one-of-many” code has been
here utilized. The same coding has also been used to train
ANN.

Methods based on the assumption that the use of a su-
pervised method also in the feature extraction phase could
enhance classification capability of the system, has not been
presented in the literature so far. As a result of PLS-DA two
matrices are obtained: “scores” and “ypred” (matrix of pre-
dicted affiliation to the particular class predictor matrix). Both
of them can be used separately (resulted in %cc4 and %cc5)
or together (resulted in %cc6) for feature extraction phase
for further ANN processing. In all experiments, the same ar-
chitecture of back-propagation neural network (Fig. 2), i.e.,
the sigmoid transfer function and gradient descent algorithm
(learning rate = 0.5, momentum coefficient = 0.8) to adjust
w orks
c ayer

ses for
arrying the maximum portion of variance. Nonetheless
dvantage of PCA is in the fact that it removes correlation

Fig. 3. Scaled respon
eights and biases in the network was used. The netw
ontained 10 neurons in hidden layer and five in output l

orange juices (all brands).
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Fig. 4. Scaled responses for orange juices (one brand).

(corresponding to five brands of juice). All PCs and LVs were
considered, i.e., nine. The number of neurons in input layer
was dependent from the number of columns in the data matrix
(nine columns in all cases besides PLS-DA (ypred) + ANN
model—five neurons, and PLS-DA (scores + ypred) + ANN
model—14 neurons). The data processing was realized in
MatLab (The MathWorks Inc., Natick, USA).

5. Results and discussion

Scaling of electrode responses was performed in order to
visualize sensor array outputs (Figs. 3 and 4). All the brands
were easily distinguished from each other—their pattern of
responses were evidently different (Fig. 3). Similarity of pat-

F two
m

tern responses of the same brand samples is presented in
Fig. 4. Responses of the majority of the electrodes were
almost the same; however, two electrodes (Cl−, Na+/K+-
selective) exhibited different signals for the same brand sam-
ples. This effect is observed for the electrodes possessing the
worst discrimination capability, i.e., the sensors for which
the range of the potentials measured in all brands tested is
the narrowest. Therefore, the scaled responses of these sen-
sors measured in the same brand sample are characterized by
the greatest signal variability in the [0,1] interval.

Building up learning and testing set from the measure-
ments of samples originating from various manufacture lots
was undertaken in order to avoid overfitting of the classifica-
tion model. The authors observed that the data set from the
samples from one manufacture lot usually produce overfitted
models, which means that samples with the same composition
(the same manufacture lot) are recognized with 100% accu-

F two
m

ig. 5. PCA plot of juice measurements (for each brand samples from
anufacture lots were presented).
ig. 6. PLS plot of juice measurements (for each brand samples from
anufacture lots were presented).
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Table 2
Results of classification

Model Model performance for the learning set (fitting) Model performance for the testing set (validation)

Direct processing
ANN %cCCLEARN

1 = 20.0a %cCCTEST
1 = 20.0

PLS-DA %cCCLEARN
2 = 100.0 %cCCTEST

2 = 93.0

Two-stage processing
PCA + ANN %cCCLEARN

3 = 100.0 %cCCTEST
3 = 92.0

PLS-DA (scores) + ANN %cCCLEARN
4 = 100.0 %cCCTEST

4 = 70.0

PLS-DA (ypred) + ANN %cCCLEARN
5 = 100.0 %cCCTEST

5 = 90.0

PLS-DA (scores + ypred) + ANN %cCCLEARN
6 = 100.0 %cCCTEST

6 = 100.0
a Establishing of the model failed.

racy, when those with different manufacture date are hardly
or even completely incorrectly recognized by the system. It
is probably due to the fact that in this case, the classifier is
too complex; it models noise in the data set and it fails to
capture true data structure. In order to improve the general-
ization performance and thus working out the true working
condition, the data obtained by measuring samples originat-
ing from different manufacture lots was used to construct the
classification model. The testing set was independent of the
learning one (different manufacture lot), and thus, capturing
of true data structure of the model was possible to be checked.

PCA and PLS-DA were used to extract information from
multicomponent measurements and to remove redundant
data. They also allow the visualization of the majority of sig-
nificant data in two or three-dimensional spaces. Respective
clustering of measurement data coming from various manu-
facturers of orange juice was visible both on PCA and PLS-
DA plots (Figs. 5 and 6, respectively).

In the case of direct processing, satisfactory results were
achieved by PLS-DA (Table 2, %cc2 = 93). This was due to
the fact that this classification method besides removing re-
dundant data and giving uncorrelated features, provides fea-
tures that are at their maximum extent correlated with the
classification objective. ANN without any feature extraction
procedure was not able to give reasonable results—its clas-
sification accuracy was equal to casual classification (proba-
b qual
2 ed to
p not
fi

rthy
r ANN
( nt
d two
m ere
u ts the
d mem
b s of
P d by
t rs,
i . For
e mple
b lem-

atic, since the sample is also very similar to the first brand.
In such cases, additional information processed directly by
ANN can be considered and appropriate choice between these
two brands can be done—that is why the best performance
was obtained when two matrices, ypred and scores, were pro-
cessed by ANN. The role of ANN is then to combine non-
linearly all the information that is necessary for classification
and that it is provided by PLS-DA. This method resulted in
100% classification capability (%cc6,Table 2).

6. Summary

The comparison of two methods, direct and two-stage pro-
cessing, for data obtained by measuring samples of orange
juices was presented in this paper. An array of ion-selective
electrodes containing two kinds of sensors, one with en-
hanced selectivity towards ionic species present in the sam-
ple, and the other, cross-sensitive, was able to discriminate
between various brands of orange juices originating from var-
ious manufacture lots. Classification ability of various pro-
cedures based on PCA, PLS-DA and ANN was presented.

A new method of sensor array data analysis, based on the
fact that supervised feature extraction could enhance clas-
sification ability of multi-sensor systems, was introduced.
Verification of the presented method resulted in a complete
i

A

Sci-
e

R

m 7

97)
ility of assigning the sample to one of five classes was e
0%, the size of each class was the same). ANN need
erform feature extraction phase, at other times it could
nd true data structure.

In the case of two-stage data processing, notewo
esults were achieved by the sequence PCA and
%cc3 = 92). PLS-DA as a tool for extraction of significa
ata was able to provide satisfactory results only when
atrices, “scores” and ”ypred” (prediction matrix), w
sed. It has to be noted that these matrices represen
escribed sensors data (scores) and the predicted class
ership (ypred). By using both of that, all the potentialitie
LS-DA are taken into account as variables to be treate

he ANN. PLS output matrix (ypred) is built up of vecto
n which the highest value determines class membership
xample vector [0.9, 0.1, 0.9001, 0, 0.2] indicates that sa
elongs to third brand. However, this assumption is prob
-

dentification of unknown samples.
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